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Analysis of Slightly Anisotropic Shells

Ricaarp G. Done* AND STanLEY B. Dongf
Aerojet-General Corporation, Sacramento, Calif.

A perturbation method of solution for the governing system of differential equations for
laminated anisotropic shells is presented. These shells may be composed of an arbitrary num-
ber of bonded layers, each with a different thickness, different orientation, and different aniso-
tropic elastic properties. Such a construction can appropriately describe filament~-wound
pressure vessels. By the perturbation scheme it is possible to reduce the system of anisotropic*
shell equations to successive systems of orthotropic shell equations. Thus, the complete
solution consists of a series of solutions of equivalent orthotropic shells. The general per-
turbation system of equations is then specialized for cylindrical shells using the well-known
Donnell approximations. The particular case of uniform pressurization and axial force is

solved in detail.

Introduction

ILAMENT-WOUND pressure vessels are prominent in

the aerospace industry because their improved strength-
to-weight ratio permits the design of more efficient rocket
motor cases. The construction and material properties of
these pressure vessels are such that they can be appropriately
characterized as laminated anisotropic shells. A theory
governing the behavior of landnated anisotropic shells
has recently been presented in Refs. 1 and 2. The mathe-
matical model employed in the theory represents a shell
structure composed of an arbitrary number of bonded layers
with different thicknesses, orientations of elastic axes, and
anisotropic elastic properties. A new feature arising from
such a construction technique is the appearance of a coupled
system of differential equations. This coupling reflects the
simultaneous response of extensional and flexural deforma-
tions for a single load component (either an in-plane force or
a3 bending moment).} As a consequence of this coupling and
the general difficulty of solving anisotropic problems, very
few solutions have appeared in the literature.

In Refs. 3 and 4 a perturbation scheme was employed to
uncouple the governing system of equations. This method
of analysis reduces the original system of equations to suc-
cessive systems of homogeneous anisotropic shell equations.
As a result, solutions from homogeneous shell theory can be
used. In this paper the perturbation scheme is used to re-
duce general anisotropic shell equations to successive systems
of orthotropic shell equations, provided that the degree of
anisotropy is small.§ The final systems of equations are in
g form used for analysis of nonhomogeneous, orthotropic
shells with additional terms to account for anisotropy. The
general system of equations is then specialized for circular
cylindrical shells. The case of uniform pressurization of a
semi-infinite cylindrical shell is presented as an illustration
of practical application.

Recapitulation of Basic Equations

Let a, B, z be orthogonal space coordinates of the shell.
The line element in this coordinate system is given by
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1 This coupling has been pointed out by Ambartsumyan? for
laminated anisotropic shells and independently by Reissner and
Stavsky? for laminated aeolotropic plates.

§ A perturbation method of solution for homogeneous ortho-
tropic plates has been given by Vinson and Brull.® By their
scheme, successive systems of isotropic plate equations were
solved. The solution to the orthotropic plate was then given
as the sum of the isotropic plate solutions.

ds* = A%[1 + (2/R.)]%da? 4 B2[1 4+ (2/R.)1%dB% + dz* (1)

where A and B are surface metric coefficients, which, along
with the principal radii of curvature R, and R, satisfy the
Gauss-Codazzi relations.

The theory developed in Refs. 1 and 2 is predicated on the
Kirchhoff-Love hypothesis on deformation. Application to
thin shells requires that quantities of the form z/R; and z/R,
be neglected in comparison with unity.

For slightly anisotropic shells, the stress resultant-displace-
ment and the stress couple-displacement relations from
Ref. 1 are re-examined.
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where e,€,7v:: are the in-plane strains, xi, Xz, X2 are changes
of curvature, and A;;,Fy,D;; are elastic coefficients defined by

N
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The C;;® coeflicients represent the anisotropic elastic proper--
ties of the kth layer. These material properties are taken

to be homogeneous in each individual layer but may be

different from layer to layer. The quantities h; and h._; are

the distances from the reference surface to the top and bottom

surfaces of the &th layer, respectively. Kach layer is as-

sumed to have constant thickness.

The appearance of both in-plane strains and changes of
curvature in Eqgs. (2) and (3) indicates coupling of extensional
and flexural effects. This type of coupling has been separated
by a perturbation technique.3 ¢ The presence of elastic
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coefficients with subscripts 16 and 26 denotes the most
general degree of plane anisotropy. In this analysis, it
is assumed that these coefficients are small so that the per-
turbation technique can be applied.

Perturbation Method Applied to Anisotropic
Shells

The assumption that the shells under consideration are
only slightly anisotropic suggests that a perturbation method
can be employed to obtain a solution. In this method, the
general equations are reduced to successive systems of
orthotropic shell equations. The solution to the first system
is that for an orthotropic shell. Successive corrections are
added to account for the general plane anisotropy. To
apply this method, the fundamental quantities are param-
eterized to assess their relative orders of magnitude. Let

[A2,F 4, Dy] = minimums of [A;,F;,Di;)
t.j=12ands=75=6 (5
[AA,F A7D A] =
maximums of [As or A, Fis 0r Fas, Dy or Dog]  (6)
Assume that ¢ is a measure of length such that A, A 4t? A,

and A 4i? are on the order of F, Dy, F 4, and D, respectively.
Furthermore, let

Ai]'* = Aij/AM Fij* = Fij/AMt

D.* = Di;/Aut? ,j =1,2andi =35 =6 (7)
Ae* = Aw/A4 Ag® = Ase/A4
Fig* = Fio/Aut Fog® = Fos/Aul ®)
Dy* = D/ Aat? Dy* = Deg/Ast?
Na*=Nv¢/AMt N3*=NB/AMt
Naﬁ* = Naﬁ/AMt Ma* = MQ/AMtZ
Mg* = Mg/Aut?  Mas* = Mag/Aut? 9)
Q.* = Qa/AMt Qﬂ* = Qﬁ/AMt

If the degree of anisotropy is small, then 4, is small com-
pared to Ay. Therefore, the quantity § defined as

0 = As/Ax (10)

is a small number and will be taken as the perturbation
parameter. By introducing Eqgs. (5-10) into Eqs. (2) and
(8), the following set is obtained:

N.* Ap* Ap* 846 e
Bﬁ* = Am* A'zz* 5/1‘26* 62* +
N o5* 0A* 0A45* Ae™ Yu*

Fu* Fu® 8F* Xl*
Fio* Fo® 6Fy* Xo* (11)
OF 6* 0F g™ Fe* 2x12*

M* Fu* Fip* 8F* €*
M,S* = F12* Fzﬁ* 5F26* 6?* +
Mocﬂ* BF](;* 5F26* Fee* 'Yl‘l*

Dy* Dyp* 8Dy* Xl*
Dis*  Dyp* 6Dg* xz¥ (12)
6D15* BDzs* DGG* 2X12*

where &1, &%, y12.* and x,*, x2*, x12* are the parameterized in-
plane strain components and the changes of curvature, respec-
tively. In terms of the parameterized reference surface dis-
placements u*, 2%, and w*, &% ... and xi*, . . . possess the
identical forms as that of homogeneous shell theory (see, for
example, Ref. 7, p. 24). 1In these strain-displacement and
curvature-displacement relations, the displacements, the sur-
face coordinates, and the radii of curvature are parameterized
in the following way:

U™ = uo/t2 vo* = /82 w* = w/i?
a* = aft B* = 8/t 13)
Rl* = R1/t Rz* = Rz/t
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Equilibrium equations and the equation of compatibility
on the reference surface likewise do not change in form from
that of homogeneous shell theory; however, the quantities
appearing in them are parameterized. The loads appearing
in the equilibrium equations are parameterized according to

g™ = qs/An ¢.* = ¢./Ax (14)

The boundary conditions associated with the governing
system of equations are identical to those of isotropic homo-
geneous shell theory. However, they appear in parameter-
ized form and must be applied at the selected reference sur-
face instead of at the middle surface.

Qa* = q:x/AM

Equations for Cylindrical Shells

In this section the general equations that were previcusly
derived are specialized for circular cylindrical shells. The
well-known Donnell approximations are employed to arrive
at the governing equations. For a cylindrical shell, the
following coordinate system has been adopted:

X = a¥*t cos(y/a*®)
Y = a* sin(y/a*) (15)
Z = axt
where
a* = aft z =2/l y=y/t (16)

with 2’ and y’ being the unparameterized (natural) coordi-
nates of the reference surface. For this system of coordinates,
the surface metric coefficients are A = 1 and B = 1, and the
radii of curvature are B, = « and R, = a.

The strain-displacement and curvature change-displace-
ment relations, in parameterized form incorporating Donnell’s
approximations, are'

- *
- UO.y

Yi* = U, + 0, .* (A7)
X1* = —w.zy* (18)

The equilibrium and compatibility equations for cylindrical
shells take the forms

Neo® + Noy* =0

Neya® + Nyy® =0

Qe + Q" — NyJ*/a* +¢.* =0 (19)
Meo®+ Mepy,® — Q% =0

Mayo* + My,* — Q* = 0

62-11* + e].yy* - 'Yl‘.’.y:ry* - w.zz*/a* = 0 (20)

= *
a* = Uy, €2

%

— *
=—w,* Xo¥ = —W.yy

X1

In the first two equations of (19), ¢.* and ¢,* are taken to be
zero, and Donnell’s approximations are invoked.

For this problem it is expedient to regard the transverse
deflection w* and the in-plane forces N.*, N,* N.,* as the
primary dependent variables. The introduction of the Airy
stress funetion U* in parameterized form further reduces the
number of variables to two:

Nz* = U.yy* Ny* = U,xz*

where

N.o* = —U.* @D

U* = U/Aput? 22)

Equation (21) satisfies the first two equations of (19) identi-
cally. Substituting the fourth and fifth equations into the
third equation of (19) yields

Mx.xz* +2 qu.zy* + My.yy* _TNy*/a* + q:*= 0 (23)

'A comma in the subscripts denotes partial differentiation
with respect to the variables that follow.
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Equations (20) and (23) constitute the governing system of
equations for the problem. They can be expressed in terms
of U* and w* by inverting Eq. (11):

[e*] = [B*]IN*] — [B*][F*][x*] @24
where the matrix [B*]is the inverse of [4*]. Substitution of
Eq. (24) into Eq. (12) gives

[M*] = [b*][N*] + [d*][x*] (25)
where
[b*] = (F*]1B*]
] = [Pl -
[d*] = [D*] — [F*][B*][F*]

As the perturbation parameter 8 appears within the matrices
[A*], [F*], and [D*], the matrix operations yielding [B*],
[6*], and [d*] have the form

Z A (P)e2n
n=0

Ay (W6%m

Q n=

=
I
s

n

Z )\Gl(n)52n +1

Lyp=0

But, since 8 is considered a small quantity, only the leading
coeflicient in A will be retained. Thus

M@ M@ A ©
[)\] = )\m(o) )\22(0) 5)\26(0) )\ = B*,b*,d* (28)
A1 @ SNe® Aes®

Equations (24) and (25), written explicitly, are

61* = BIJ*U.yy* + Bl2*U.zx* + bll*w-zz* +
621*’(»0.”* + 5[_BIG*U,xy* + 2b61*w.x1/*]

€2* = Bl2*Uvml* + BZ2*U.xz* + blz*w‘zz* + (29)
b22*w,yy* + 6[_B26*U'xy* + 2b62*w,zy*]

Yis* = —Be*U opy* + 2be*w,z4* +

8[B1e*U.4y™ + Bus*U 2o® + bis*w.oo™ + bos™ 1w,y *]

ZWZ* = bu*U,yy* + b12*U,zx* - dl]*wwx* -
du*w,w* + 6[_b16*U.zy* - zdlﬁ*w,zy*]

lwy* = b2]*U.yy* + b22*U.:m* - dIZ*w,zz* - (30)

d?.z*w.yu* +6[_b26*U.:cy* - 2d26*w,:cy*]

ﬂlzy* = _bGS*U,zy* - 2d66*w.x7;* +
8lba™U.yy™ + bea*U,eo® — dig™w,00™ — 670, 4y " ]

These expressions appear as orthotropic shell equations with
small corrective terms to account for the general anisotropy.
S_ubstitution of Eqgs. (29) and (30) into Eqgs. (20) and (23)
gives

LU* + Low* — w...*/a* = §[LU* — Lw*] (31)
LyU* — Law* — U.*/0* + ¢.* = §[Lew* — L;U*]  (32)
where
Li{ } = Bu*{ }ieez + @Br* + Be™{ } ey +

Bll*{ } YUY

Lz{ } = blz*{ },xxx:c + (bu* + bi* — 2bg™) X
}'zzyy + bi}*{ }’WIMI

L3{ } = dll*{ }.zrzz + 2(d12* + 2d66*){ }.xzﬂy +
d22*{ },ww (33)

2326*{ },:vxxy + 2Blﬁ*{ },zw/y

(2b62* - b]s*){ }'x:cxy +
(2b61* - b26*){ }:ryuu

L

—— —

T Ap(Wen
n=0

)\22(11)327;
0 .

Z )\62(71)5211-}-1
n=0
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Lﬁ{ } = 4d15*{ }-xzxu + 4d25*{ }'Wﬂy

The left-hand sides of Eqs. (31) and (32) are the ortho-
tropic shell equations, and the right-hand sides involve the
corrective terms for general anisotropy.

Let the solution to Egs. (31) and (32) be taken as a power
series expansion in § for both U* and w*:

w* = w* 4 dw,* + 0%ws* + ...
(34)
U* = U* + 6U* + 82U.* + ...

Then Egs. (31) and (32) reduce to the following systems of
equations which will be solved successively:
First System
LiU* + Law* — wizo*/a* = 0
(35)
L, U* — Ls’wl* - Ul,zz*/a'* + (]z* =

s

)\]G(n)52n+1
(1}

n

M

NP kL |\ < B d® (@7)
0

Z Ngo(?)827
n=0

o~ System (n = 1,2,...)
LlUn-i-]* -+ szn+l* - wn—l—l.zz*/a* = L4Un* - stn*
LyUnir® — Lot * — Un+l.:cr*/a/* = Dgu,* — LyU,*

These systems of equations must be solved with the appro-
priate boundary conditions. For a complete cylindrical shell,
these conditions to be evaluated at = const are

Ma* + Mo*/a* = h*(y)
N.* = h*(y)
Q* + Moy,* = h*(y)
M.* = h*(y)

where i * through 2,* are preseribed functions of y in param-
eterized form defined by

h*() = hi(y)/Aut
ha*(y) = ha(y)/ Aut?

In terms of U* and w*, Eq. (87) becomes
=+ bes™/a)U.ay™ — Q2des™/a*)w.ci* +
(6/a*) (b6 U, 0s™ + b2 U oa™ — dig™w.0c® —
dog™w,,*1 = M*(y)

3
i

)

@7

i=123
(38)

U™ = h*(y)

bo*U oo™ + (bu* - Qbss*) U,zyy* — duFW,eee™ — (39)
(die* + 4ds™) W, ey ™ + 8206 %U yyy* + (2be® — bis*) X
Ussas® — 416™W.02y™ — 2ds6™W,500™ ] = hs*(y)
b *U .y + b1o*U 2e™ — du*w,en™ — dlz*W,yy* -
0[b16*U.oy™ + 2dis*w,20*] = ha*(y)
For the solution form given by Eq. (34), the following systems
of boundary conditions must be prescribed to the corre-
sponding systems of differential equations:
First System
—(1 + bes®/0™) Urey™ — Q@das™/0®)w1,25™ = M*(y)
Ul-yy* = hZ*(y)
(bu* - 2b66*) Us,zyy* T b Uheee™ — du™W1.22:™ — (40)
(d12* + 4d66*)w1,1yy* = hs*(y)

bu*U],yy* F b*Urze™ — o™ — dig™ Wiy, * = ;*(y)
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o System (n = 1,2...)
(a* + bsﬁ*) Un+l,:vy* - 2d66*wn+l-zu* = bﬁl*U"'W* +

beZ*Un.zz* - dlﬁ*wnvzx* - d26*wn.uy*
Unitigy = 0

(bn* - 21766*) U'n,_)_l,zyy* + b12*Un+1.xxz* - (41)
dll*wn+],z:cz* - (dlz* -+ 4d66*)wn+1:1111!* =
ddigw* nizay T 2da6W* n.yyy — 2b61U*n.uyy -
(2bss — b16) Un,zay
b]l*Un‘l']rillI* + b12*Un+1.:c:c* - d]l*wn-i-l»a:a:* -
e Wat1,45™ = b16*Unizy™ + 2d16*wn,zy*

To illustrate the solution method for cylindrical shells, the
following problem is presented. Consider a semi-infinite
cylindrical shell’ that is subjected to a uniform pressure of
intensity g¢* and to a constant extensional force N..*. Since
the loading conditions do not depend on the y coordinate,
the first system of equations will degenerate into a coupled
system of ordinary differential equations. The boundary
conditions at £ = 0 for this case are taken as

Nz* = Nzc*
Naoy* + M.,*/a* =0
42
Q.* = G* 4
M.* = My*

The variable U;* of the first system may be eliminated by
integrating the first equation of (35) twice and substituting
the result into the second equation, which for discussion
purposes will be called the determinative equation. The
constants associated with the integral of the first equation,
which are akin to N.* have been evaluated to satisfy axi-
symmetrical geometry. The solution of the determinative
equation is
w*(x) = exp(—Ayx)[kn cosuyr + ki sinpyx] X
exp(Ayz) [kis cosuyr + ki sinuyz] +
(@¥)2By*ge* + Br*a*N..* (43)
where A, u, and v are the roots of the auxiliary algebraic
equation associated with the homogeneous determinative

equation and are related to the elastic coefficients in the fol-
lowing manner:

v = [@9*{dn*Ba* + (bu*)?}] /4
{2} = {@} [via*®u* + i(dn*Ba*1v) }1i2 ] “

Im
where ¢ = —1Y2  Evaluating k;; through % from condi-
tions (42) gives
kn = (1/8)[2Q6*Auv2Cy — (Mo* — by*Neo*) X
{Cony — Y3\ — p)Ch}]
k12 = (I/A)[(MO* - bll*Nmo*) X
{CNy + ¥ A@B? — MG +
Q*{Cy — v*(\* — w)Ch}]
ks =ku =0

(45)

where
A = [=Cohy — ¥*AN@Bp® — M)CL]2Mpy?Ch] —
[Cy — v*(N* — p)Ci][Copy — NuBN — p)Ci] (46)
and
Ci = du* + (012*)?/Bn*

f A more detailed discussion of this problem is contained in
Ref. 8 and is available on request.
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Cs = blz*/Bzz*a*

Knowing w,*(x), it requires only a straightforward calcula-
tion to obtain U;*.

With the solution of the first system, the right-hand sides
of the second system of governing equations and its boundary
conditions may be calculated. The nature of the solution to
the first system results in the vanishing of the right-hand
sides of the differential equations and some of the boundary
conditions for the second system. The only remaining non-
homogeneous boundary condition for the second system is

(a* 4+ bes™) Usiep™ + 2des*w2.20* = buy*N,o* +

beo* [ & 2P kg ¥

%‘( [_Qj_(a('zz—%qo — ]C]:1'y2()\2 _ ”2) _{_2]0]2}\#72] +
dis* [k *y2 (N2 — u?) — 2knphpy?] (47)

The functions U,* and w.* are again required to remain
finite as z tends to infinity. Note that the anisotropy of the
material is reflected only in a shearing force at the edge x = 0
for the second system. Let the solution to the second system
be taken as

U*(z,y) = i ofn() COS<3‘Z>
n=1
(48)
wr@y) = ). wgalx) 008<EZ>
n=1 @

Substitution of Hq. (48) into Eq. (36) yields a coupled system
of ordinary differential equations with constant coefficients
for the functions »g.(x) and »f.(x). This resulting system
may be uncoupled by raising it to one equation of the eighth
order. The solution to the resulting eighth-order equation is

2fn(x) = 2An(1) eXp(xpn) + 2An(2) exp(xﬁn) +
2da@ exp@gn) + 24nw exp(eds)

(49)
200(®) = 2B exp(@p.) + «Ba) exp(kp.) +
2Bug) exp(ags) + 2Bay exp(ada)

where pa, Da, ¢n, dn are the roots and complex conjugate roots
with negative real parts to the auxiliary equation.** The
roots with the positive real parts have been omitted because
of boundedness conditions at £ = o. The constants of
integration yA.¢y and 2B.u) are related in the following
manner:

A _ I:Bzz*pn4 + Cspa? + Bll*(n/a*)4:| B _
i bi*pat + Cip,?® + by* i

M1(2Baqy)
(50)

]an(s) = M.(.Bn@)

4 _ I:Bzz*qn4 + CSQ'»2 + Bu*(n/a*)4
2@ b12*q",4 + C4Qn2 + b21*

2 = 24nm sy = 2dawm
where
Cs = —1/a* — (bu* 4 bu* — 2bs*) (n/a*)?
51)
Cy = (2By* + Bg™®)(n/a*)?

Substitution of the solution into the boundary conditions
leads to the following matrix equation for the evaluation of
the constants:

Sa B4 8z 85| [:Brw D
Se 8¢ Sp Sp||Ba | _

0
Sz Sz Sr Sr 2Baw | | O (562)
S¢ S¢ Srk Sz 2B 0

B

** A bar over a quantity denotes its complex conjugate.
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where
Sa = /2)[Mi(1 + bes*/a*) + 2des™/a*1pn
Sp = (n/2)[M,(1 + bes™*/a*) + 2des/a*1qx
Se = —Mn*/4 Sp = —Mn2/4
S = p*u(br* My — du*) + (pa/4) [die® + 4des™ —

Mi(bu* — 2bs™) In®  (53)
Sr = ¢’ (b*My — du®) + (ga/4) [dis* + 4des™ —

My(bn* — 2be™) In?

Se¢ = pa2bu*My — dy®) + (n?/4) (de* — bu*M3)
Sy = .2 (0™ My — dn*) + (n¥/4) (dw* — bu*My)

The D.’s are the Fourier coefficients of the expansion of the
right-hand side of Eq. (47) which will be denoted by K.
Hence,

v . (n v . fny
D, = j; K sm(a—z> dy/l:ﬁ sm2<g,—k> dy:l (54)

In the same manner, the third and subsequent systems of
equations may be solved. The boundary conditions depend
on the solution of the previous system.

After g sufficient number of systems have been solved, the
solution to the complete problem must be reconstituted by
summing the solutions of the individual systems and returning
to the original parameters by means of Eqgs. (8, 9, 13, and 14).

Discussion

A vperturbation method of solution has been applied to
laminated anisotropic shells. By this scheme the effect of
general anisotropy was reduced to orthotropy such that the
solution to an anisotropic shell problem consists of a series
of orthotropic shell solutions. The method was demon-
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strated for the uniform pressurization of laminated cylindrical
shells, Although the method of solution is straightforward,
the amount of algebra involved is quite extensive. There-
fore, it is suggested that this method be used on shell struc-
tures where the general anisotropy is slight. Then a good
approximate solution may be obtained by solving a small
number of systems of equations.

By letting the radius of curvature a tend to infinity through-
out the equations for cylindrical shells, a system of laminated
anisotropic plate equations is obtained. Techniques em-
ployed previously for cylindrical shells are again applicable
for laminated anisotropic plates.
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A Transient Axisymmetric Thermoelastic Problem for the

Hollow Sphere

Wriiriam E. WARREN*
Sandia Laboratory, Albuquerque, N. Mex.

The linear uncoupled quasi-static theory of thermoelasticity has been applied to the elastic
hollow sphere having a prescribed axisymmetric transient heat input on the outside surface,
and a prescribed axisymmetric transient temperature distribution on the inside surface.
Series expressions for the temperature, stress, and displacement fields are obtained in terms
of orthogonal functions. As a particular example of the analysis, the stresses due to aero-
dynamic heating of a hypersonic hollow sphere are investigated in detail, and some repre~
sentative transient and steady-state stress distributions are presented in graphical and tabular

form.

Introduction

HE thermoelastic problem for a sphere has been the
object of numerous investigations in the past, and bib-
liographies of this work may be found in the references.i~?
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Of particular interest to the present investigation is the work
of Trostel,* who obtains quite general solutions for general
transient axisymmetric boundary conditions on the hollow
sphere. The corresponding steady-state problem has been
solved by McDowell and Sternberg,® and a solution for the
transient thermal stresses in a solid sphere has been obtained
by Melan.® The purpose of the present investigation is to
present a detailed analysis of the transient thermal stresses
in a hollow sphere subject to a prescribed axisymmetric
transient heat input on the outside surface, and to a pre-
scribed axisymmetric transient temperature distribution on
the inside surface. The inner and outer surfaces are assumed



